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Abstract

This study investigates how neural networks address the properties of children’s lin-

guistic knowledge, with a focus on the Agent-First strategy in comprehension of an

active transitive construction in Korean. We develop various neural-network models

and measure their classification performance on the test stimuli used in a behavioural

experiment involving scrambling and omission of sentential components at varying

degrees. Results show that, despite some compatibility of these models’ performance

with the children’s response patterns, their performance does not fully approximate

the children’s utilisation of this strategy, demonstrating by-model and by-condition

asymmetries. This study’s findings suggest that neural networks can utilise informa-

tion about formal co-occurrences to access the intended message to a certain degree,

but the outcome of this process may be substantially different from how a child (as a

developing processor) engages in comprehension. This implies some limits of neural

networks on revealing the developmental trajectories of child language.
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Research Highlights

∙ This study investigates how neural networks address properties of child language.

∙ We focus on the Agent-First strategy in comprehension of Korean active transitive.

∙ Results showby-model/condition asymmetries against children’s response patterns.

∙ This implies some limits of neural networkson revealingproperties of child language.

1 INTRODUCTION

There is growing interest in the ways neural networks (NNs) address

human language behaviour (Futrell & Levy, 2019; Hawkins et al.,

2020; Hu et al., 2020; Warstadt & Bowman, 2020). Artificial NNs,

analogous to biological NNs in human brains (Haykin, 2009; Hop-
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field, 1982; Jordan, 1997), are proposed as a computing system which

comprises weighted and layered interconnections amongst process-

ing units (loosely modelling neurons in the brain) responding to input

in parallel and producing output through propagation (see Goldberg,

2017; Kriesel, 2007 for in-depth descriptions of NNs). The continu-

ous development of NN algorithms in computer science hasmade their
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internal mechanisms deviate from how biological neurons operate in

the human brain (e.g., Crick, 1989), but NNs have been applied to

various disciplines in reality (Abiodun et al., 2018). Specifically in the

literature on language development, while researchers adopt various

computational modelling techniques to reveal developmental trajec-

tories of linguistic knowledge (Alishahi & Stevenson, 2008; Ambridge

et al., 2020; Bannard et al., 2009; Chang, 2009; Divjak et al., 2021; You

et al., 2021), the current research practice bears two major caveats.

First, findings are based exclusively on a limited range of languages

such as English, generating a sampling bias towards those languages

and populations speaking those languages (cf. Kidd & Garcia, 2022;

Nielsen et al., 2017). Second, compared to an emerging strand of litera-

ture targeting adult language (Hawkins et al., 2020; Hu et al., 2020; Oh

et al., 2022; Warstadt & Bowman, 2020; Warstadt et al., 2019), there

is little research on how NNs approximate the characteristics of child

language found in corpus analysis and/or behavioural experiments.

The current study attempts to fill these gaps, inquiring into the

extent to which NNs capture the properties of children’s linguistic

knowledge for language other than English, with a special focus on

the Agent-First strategy in comprehension. Children oftenmap the first

noun (mostly the subject) of a sentence to an agent role in comprehen-

sion. This strategy, whether it be a temporary bias in online processing

(e.g., Abbot-Smith et al., 2017) or a heuristic persistent over the entire

comprehension (e.g., Slobin & Bever, 1982), is driven from various

sources. To illustrate, repeated exposure to the particular association

between the first argument and agenthood provides a prototype for

thematic role ordering (Bates &MacWhinney, 1989). The first item in a

sequence also holds a privileged status in human cognition. Language

users employ the first element in a sentence as a starting point for

language behaviour, which guides the rest of the sentence (MacWhin-

ney, 1977). When comprehenders initiate linguistic representations

and map new information onto the developing structure, the first-

mentioned item provides a pathway for the sentence-level integration

of incoming information later, rendering that item advantageous and

privileged in comprehension (Gernsbacher, 1990).Moreover, this strat-

egy aligns with the typical composition of an event by placing an entity

that engages most strongly with an action in the early phase of infor-

mation flow (Bornkessel-Schlesewsky & Schlesewsky, 2009; Cohn &

Paczynski, 2013).

Because of its motivation from multiple sources, this strat-

egy is often deemed as the interface of linguistic knowledge and

domain-general factors in the human mind (Bever, 1970; Bornkessel-

Schlesewsky & Schlesewsky, 2009; Esaulova et al., 2021; Ferreira,

2003; Givón, 1995; Kemmerer, 2012). Indeed, this strategy has drawn

attention to researchers working on child language; existing litera-

ture, mostly based on a limited range of languages, reports children’s

heavy reliance on this strategy for sentence comprehension (Abbot-

Smith et al., 2017; Cristante & Schimke, 2020; Gertner et al., 2006;

Jackendoff & Wittenberg, 2014; Sinclair & Bronckart, 1972; Slobin &

Bever, 1982; Yuan et al., 2012). This favours the early emergence and

universal application of this strategy as an intrinsic cognitive bias for

child comprehension across languages (but see Garcia & Kidd, 2020;

Shin, 2021). Several studies have modelled word-order preferences

(broadly touching upon this strategy) in production at a satisfactory

level (Chang et al., 2006), together with cross-linguistic variability

(Chang, 2009).What remains is to see if this success also holds for com-

prehension, a process in which a language user identifies an intended

meaning/function from the given form (Goldberg, 2019),without posit-

ing pre-determined/artificial sets of input (e.g., form-meaning pairs) for

model composition as the previous studies did.

1.1 Agent-First strategy in comprehension of
Korean active transitive

We pursue this inquiry through an active transitive construction in

Korean, an agglutinative, Subject–Object–Verb language with overt

case-marking and understudied for this topic. The canonical word

order for the active transitive follows agent–theme ordering (1a); this

can be scrambled (1b), manifesting the reverse thematic role ordering

(theme–agent). Korean allows the omission of sentential components if

the omitted information can be inferred from the context (Sohn, 1999).

As long as participants in an event are clearly identified in the context,

a case marker (2a) or a combination of an argument and a case marker

(2b) can be omitted without changing the basic propositional meaning.

(1a) Active transitive (canonical)

kyengchal-i totwuk-ul cap-ass-ta.

police-NOM thief-ACC catch-PST-SE1

‘The police caught the thief.’

(1b) Active transitive (scrambled)

totwuk-ul kyengchal-i cap-ass-ta.

thief-ACC police-NOM catch-PST-SE

‘The police caught the thief.’

(2a) Omission (casemarker)

kyengchal-i totwuk-ul cap-ass-ta.

police-NOM thief-ACC catch-PST-SE

‘The police caught the thief.’

(2b) Omission (case-marked argument)

kyengchal-i totwuk-ul cap-ass-ta.

police-NOM thief-ACC catch-PST-SE

‘The police caught the thief.’

Previous literature on Korean-speaking children’s comprehension

has reported that the canonical pattern is more reliably interpreted

than the scrambled one, with the sentence-initial argument mapped
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F IGURE 1 Example of test stimuli used in Shin (2021): NCASENCASEV.

onto the agent (regardless of its actual thematic role) until the age of

four (Cho, 1982; Kim et al., 2017). This indicates the children’s utilisa-

tion of the Agent-First strategy as the default comprehension bias, as

found inmany languages.

However, Shin (2021) reveals some limits on this bias, arguing

that there may be no standalone Agent-First strategy for compre-

hension (see also Garcia & Kidd, 2020). Shin finds that, for Korean-

speaking children’s comprehension of a transitive event, theAgent-First

strategy is activated properly only in conjunction with other types

of grammatical cues. Shin measured typically developing 3–6-year-

old children’s comprehension of the active transitive construction

involving scrambling/omission of constructional components through

picture-selection tasks with an innovative methodology that sys-

tematically obscured parts of test stimuli with acoustic masking

(Figure 1).

Shin (2021) notes four major findings (Table 1). First, whereas the

children had a good command of case-marking knowledge regard-

ing the active transitive (the nominative case marker indicating the

agent; the accusative case marker indicating the theme), they showed

an asymmetry in performance by canonicity: they were better in

the canonical condition (NNOMNACCV) than in the scrambled con-

dition (NACCNNOMV). Second, they did not manifest the agent-first

interpretation strongly in NCASEV, showing around 40% for the 3-and-

4-year-olds and around 60% for the 5-and-6-year-olds (and 67% at

best for the adult controls). In this condition, children must determine

the thematic role of the first and the sole case-less argument, which

can in principle be interpreted as either the agent or the theme. If

the Agent-First strategy strongly guides children’s comprehension, this

argument should be interpreted as the agent reliably, which was not

the case. Third, compared to NCASEV, the presence of a second noun

(NCASENCASEV) increased responses consistent with the Agent-First

strategy, but its magnitude differed by age such that only the 3-and-

4-year-olds considerably enhanced the agent-first interpretation from

NCASEV to NCASENCASEV. Fourth, the presence of case markers sub-

stantially increased the agent-first response rates for both age groups,

as shown in NNOMV.

Based on these findings, Shin (2021) argues that, when Korean-

speaking children interpret a transitive event, they do not employ this

strategy automatically and immediately based solely on an argument’s

initial position in the sentence.Considering theparticular experimental

setting in which participants were exposed to pictures prior to stimuli

so that they adjust their interpretation to transitive events with two

animate entities (one as an agent and the other as a theme) before

encountering the stimuli, the children’s comprehension behaviour

would have been guided by two major forces. One involves proper-

ties of caregiver input regarding transitive events. In CHILDES, the

number of first-noun-as-agent pattern instances did not exceed that

of first-noun-as-theme pattern instances, but almost all of the transi-

tive instances had either a second argument or a marker (with a strong

association between the agent and the nominative case marker). The

other force involves the developing nature of a child processor, priori-

tising a local cue over a distributional cue (Wittek & Tomasello, 2005)

when dealing with various (non-)grammatical cues simultaneously to

accomplish the task at hand. Children may thus attend to the local

pairing that associates the nominative-marked argument onto agent-

hood before becoming sensitive to the broad-scope distributional cue

involving a second argument in employing the assumed Agent-First

strategy for a complete interpretation of a transitive sentence at hand.

Because the activation of the Agent-First strategy is tied to other gram-

matical cues such as case-marking (as a local cue; particularly the

nominative casemarker) and a second nominal (as a distributional cue),

Korean-speaking children (and even adults) employ this strategy with

confidence only when they are provided with a linguistically informa-

tive environment. This argument challenges the long-standing idea that

children have the defaultmapping of the agent onto the first noun as an

intrinsic bias for comprehension, as claimed by previous studies target-

ing the major languages being investigated (Abbot-Smith et al., 2017;

Cristante & Schimke, 2020; Gertner et al., 2006).
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TABLE 1 Summary of results: major conditions.

Condition Group Mean (%) SD Note

NNOMNACCV 3–4-year-olds 84.44 0.36 Scoring: accuracy (1: correct; 0: incorrect)

5–6-year-olds 94.20 0.24

Adult 100.00 0.00

NACCNNOMV 3–4-year-olds 77.78 0.42

5–6-year-olds 71.01 0.46

Adult 100.00 0.00

NNOMV 3–4-year-olds 94.44 0.23

5–6-year-olds 97.10 0.17

Adult 93.33 0.25

NACCV 3–4-year-olds 92.22 0.27

5–6-year-olds 97.10 0.17

Adult 100.00 0.00

NCASENCASEV 3–4-year-olds 66.67 0.48 Scoring: high likelihood of agent-first interpretation
(1: agent-first; 0: theme-first)5–6-year-olds 77.27 0.42

Adult 90.00 0.04

NCASEV 3–4-year-olds 42.59 0.50

5–6-year-olds 60.42 0.49

Adult 66.67 0.06

Abbreviations: ACC, accusative casemarker; CASE, casemarker (unspecified); NOM, nominative casemarker.

1.2 The present study

We investigate whether and how NNs, as a proxy for cognitive

space wherein learning occurs, reveal children’s manifestation of the

Agent-First strategy in comprehension. We develop four NN models—

Word2Vec (Mikolov et al., 2013), Long Short-Term Memory (LSTM;

Hochreiter & Schmidhuber, 1997), Bidirectional Encoder Represen-

tations from Transformers (BERT; Devlin et al., 2018), Generative

Pre-trained Transformer 2 (GPT-2; Radford et al., 2019)—and mea-

sure their classification performance on the same stimuli used in Shin

(2021). Given the special status of this strategy in child language devel-

opment as awindow to the interface between linguistic knowledge and

domain-general factors, scrutinising the extent to which deep-learning

algorithms capture children’s language behaviour with respect to this

comprehension bias is expected to reveal the explainability of artifi-

cial intelligence for child language, and more fundamentally, for (the

developing nature of) a child processor.

Word2Vec is a two-layer NN algorithm that creates word embed-

dings through information about words given their local usage con-

texts, by converting each word into multi-dimensional vectors and cal-

culating the similarity between these vectors. Twomodel architectures

comprise distributed representations of words: ‘continuous bag-of-

words’ predicting the current word given its surrounding words (word

order does not affect this process); ‘continuous skip-gram’ predicting

the surrounding words given the current word. LSTM is a recurrent

NN algorithm which is capable of handling long-term dependencies

by allowing information to persist. This architecture is characterised

as the hidden layer comprising a memory cell with three gates: For-

get (determining whether the incoming information from the previous

timestamp is irrelevant and thus forgotten; Input (quantifying the sig-

nificance of new information carried by the incoming input); Output

(submitting the currently updated information to the next timestamp).

BERT andGPT-2 share the transformer architecture, utilising the atten-

tion mechanism for effective computation. This mechanism enhances

each part of the input sequence differently, considering various infor-

mation about the whole sequence (e.g., segment position), to better

identify themost relevant parts of that sequence (Vaswani et al., 2017).

This enhancement allows the transformer to retain information from

the early-appearing elementswhenhandling long input sequences dur-

ing information processing (Ludwig et al., 2021; Vaswani et al., 2017).

BERT obtains rich contextual embeddings through two tasks: masked

languagemodel (randomly masking somewords in a sentence and pre-

dicting these masked words from the context of the exposed words

surrounding the masked words); next sentence prediction (determin-

ing whether one sentence in a pair would come before or after the

other). In contrast,GPT targets a general-purpose learnerwhose learn-

ing trajectories are not subject to particular tasks, so model training

does not stand on the specifics of data or tasks at hand (Radford et al.,

2019); it can also perform new tasks with a relatively small number of

examples. Architecture-wise, whereas BERT uses the encoder part and

operates non-autoregressively, GPT uses the decoder part and oper-

ates autoregressively; other than that, even though technical differ-

ences exist in hyperparameters, there is no other notable conceptual

difference.
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Thesemodels have been increasingly used to capture various adult-

language features (Futrell & Levy, 2019;Hawkins et al., 2020;Warstadt

& Bowman, 2020; Warstadt et al., 2019; Wilcox et al., 2018). You

et al. (2021), one recent study relevant to the current work, showed

that a Word2Vec learner was able to conduct semantic inference

from raw caregiver input without the mediation of structural informa-

tion, by measuring the model’s discrimination performance on English

causatives. However, other than You et al. (2021), computational

research on child language throughNNs is extremely thin.

In the present study, we train eachNNmodel by patching caregiver-

input data in CHILDES (MacWhinney, 2000) onto the respective

pre-trained models. Caregiver input—which notably differ from adult

language usage in terms of clausal composition (e.g., non-human

agents, partial utterances) and mode of delivery (e.g., simple, short,

repetitive) (Cameron-Faulkner et al., 2003; Shin, 2022a; Stoll et al.,

2009)—is known to effectively support children’s development of lin-

guistic knowledge (Behrens, 2006; Choi, 1999; Snow, 1972). If NNs

faithfully exploit this characteristic for their learning, themodels in this

study should approximate the children’s response patterns measured

by Shin (2021), showing reasonable accuracy, like their successful

performance in some adult language features (Hawkins et al., 2020;

Marvin & Linzen, 2019; Warstadt & Bowman, 2020; Warstadt et al.,

2019). Considering the transformer’s better capability to capture adult

language features than the recurrent architecture (e.g., verb bias in

Hawkins et al., 2020), BERT and GPT-2 will be presumably closer

than the other models in classification performance relative to chil-

dren’s performance found in Shin (2021). Furthermore, the notable

model-specificity involving the two transformers, such as the sole

use of the encoder/decoder part in model composition and the GPT

algorithm’s task-independent nature in the course of model training,

would generate differences in classification performance across the

two transformers.

2 METHODS

The general modelling procedure is illustrated in Figure 2.

The caregiver-input data (Appendix A) were pre-processed in two

ways: typos and spacing errors were corrected, and any sentence

whose length was less than five characters or those consisting only

of onomatopoeia and mimetic words were excluded (see Shin, 2022a

for the details about the pre-processing). This resulted in 69,498

sentences (285,350 eojeols2).

Table 2 summarises the composition of each NN model

advised/recommended by previous studies (Church, 2017; Clark

et al., 2019; Goldberg & Levy, 2014; Vázquez et al., 2020; Wu et al.,

2019).3 While NNs typically require large-scale data for training to

ensure their optimal operation (Edwards, 2015), there is nopre-trained

model exclusively constructed with caregiver input, nor a sufficient

amount of Korean caregiver input data to create a pre-trained model.

In addition, children are not surrounded only with caregiver input

in real life; there are many types of exposure to language usage that

children experience. To cope with these issues, we employed the

respective pre-trained models, which were open-access and repre-

sentative at the moment of study, in developing each NN model. We

believe that adopting a pre-trained model in conjunction with the

caregiver-input data can be one way to ensure better ecological valid-

ity for the simulation, but apparently, no research has ever touched

upon this point, thus worthy of further attention.

For the binary classification of test items (Agent-First; Theme-First),

these models were further trained with instances of all the con-

structional patterns expressing a transitive event—active transitive

and suffixal passive, with scrambling and varying degrees of omission

manifested—with labels indicatingwhether the thematic-role ordering

of these instances followedagent-first or theme-first (AppendixB). The

instances were extracted from the pre-processed caregiver-input data

through an automatic search process developed by Shin (2022a); every

sentence for each extraction was also checked manually to ensure its

accuracy. Although the focus concerning the Agent-First strategy in

this study was the active transitive, we included the suffixal passive,

anothermajor clause-level device expressing a transitive event and the

representative type of passive that children are likely to encounter

in caregiver input (Shin & Deen, 2023). Furthermore, considering the

zero occurrence of some patterns in the input, we adapted Laplace

F IGURE 2 General modelling procedure.
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smoothing (Agresti & Coull, 1998) by adding one fake instance (follow-

ing the pattern-wise characteristics) to all the patterns. Nonetheless,

most of the input comprised the active transitive, occupyingmore than

90% of the entire data.

To develop the Word2Vec model, we employed skip-gram negative

sampling due to its superior performance in language tasks compared

to the ‘continuous bag-of-words’ approach (Mikolov et al., 2013).

For model training, we first patched the caregiver-input data to the

pre-trained model, resulting in the change of the total number of word

vectors in the pre-trained model (30,185 to 30,638). We then added

to the model the transitive-event-related instances as epoch (i.e., a

cycle that trains a model with the entire dataset) proceeded up to 10.

To conduct the classification task, we first separated sentences from

labels in the caregiver-input data, tokenised all the sentences by mor-

pheme, and created a new word-embedding model with morpheme

vectors given the pre-trained model (which was morpheme-based

with a fixed context-window size). We then reduced the dimension of

the new model down to one by using t-SNE (Maaten & Hinton, 2008).

Word2Vec generatesword vectors but does not perform classification,

sowe employed support vectormachine (SVM;Cortes &Vapnik, 1995)

for the planned task (cf. Abdelwahab & Elmaghraby, 2016). The new

embedding model, together with the label information per sentence,

applied to train the SVM classifier by converting each sentence’s

morpheme in the input to either one (when that morpheme existed in

the model) or zero (when that morpheme did not exist in the model).

The trained classifier ultimately predicted if the label of a test stimulus

was Agent-First or Theme-First. For this model-classifier combination,

no variation per trial in each epoch occurred due to the invariant

nature of the word embeddings generated byWord2Vec.

In developing the LSTM model (with syllable-based tokenisation;

Table 2), there exists no syllable-based Korean pre-trained model for

LSTM, so we adapted a pre-trained model for ELECTRA to extract rel-

evant vocabulary information to train the model. After patching the

caregiver-input data to the pre-trained model, we found no change in

the model size, meaning that all the syllable types in the caregiver-

input data were already included in the pre-trained model. We then

added to the model the transitive-event-related instances as epoch

proceeded up to 10. For each epoch, all the syllable information was

submitted to themodel’s input layer. Take an eojeol saca-ka ‘lion-NOM’

as an example (see Figure 3 for illustration). For the syllable ca, the

model first evaluates if the information about the previous syllable

sa obtained from the prior cell is relevant to the current input at the

Forget gate (σ1). The model then quantifies the information about the

current input via the tangent function at the Input gate (σ2). Finally, the
model hands over this outcome to the processing of the next syllable ka

at theOutput gate (σ3), again via the tangent function.Once a sentence

is complete for processing, the optimiser computes the distance/loss

between the observed value and the predicted value, the result of

which is transmitted through backpropagation. In our model, the loss

value was reset after 500 sentences. Once the training was completed,

the model evaluated the test stimuli, accumulating by-syllable infor-

mation sequentially (by generating respective hidden layers) and then

comparing the outcomes (1= Agent-First; 0= Theme-First) to the actual

https://github.com/Kyubyong/wordvectors
https://github.com/monologg/KoCharELECTRA/blob/master/vocab.txt
https://github.com/SKTBrain/KoBERT
https://github.com/SKT-AI/KoGPT2
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F IGURE 3 Model training: LSTM (e.g., saca-ka ‘lion-NOM’).

F IGURE 4 Model training: BERT (e.g., saca-ka haym-ul masiss-key mek-eyo ‘lion-NOMham-ACC delicious-ADV eat-SE’ “The lion eats the ham
deliciously”).

labels of these stimuli.We repeated the same learning process 30 times

in each epoch and averaged the by-condition outcomes in assessing

the models’ classification performance to alleviate potential variations

during the task.

For theBERTmodel (see Figure 4 formodel fine-tuning), every input

sentence began and ended with [CLS] (marking the start of a sentence)

and [SEP] (marking the end of a sentence) to indicate sentence bound-

aries, and the length of each sentence was limited to 256 tokens. The

patching procedure increased the pre-trained model’s vocabulary size

(8002 to 24,857). We then added to the model the transitive-event-

related instances as epoch proceeded up to 10, with relevant labels

(Agent-First; Theme-First) attached. Each input sentence in the fine-

tuning stage was transformed into three embedding types. For token

embedding (see Figure 4 for illustration), the sentenceswere tokenised

(as a unit of syllable). For position embedding, each token was con-

verted into a numeric value indicating a unique index of the token

with reference to the vocabulary in the patched pre-trained model

(KoBERT). For segment embedding, the numeric value of 1wasmapped

onto a slot when a token occurred in that position of a sentence; oth-

erwise, the numeric value of 0 was used. The initial values of epsilon

(i.e., the upper bound of randomness for a model to explore the data),

learning rate (i.e., the degree to which a model changes in response to

the estimated error when the model weights are updated), and seed

(i.e., the initialisation state of a pseudo-randomnumber generator indi-

cating where a model starts) were automatically updated with the

outcomes of each epoch. The training occurred 320 times (32 batches
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TABLE 3 Composition of test stimuli

Condition Example

Expected

classification

NNOMNACCV Honeybee-NOMbutterfly-ACC

poke

Agent-first

NACCNNOMV Butterfly-ACC honeybee-NOMpoke Theme-first

NNOMV Honeybee-NOMpoke Agent-first

NACCV Butterfly-ACC poke Theme-first

NCASENCASEV Honeybee butterfly poke Agent-first

NCASEV Honeybee poke Agent-first

Abbreviations: ACC, accusative case marker; CASE, case marker (unspeci-

fied); NOM, nominative casemarker.

[the number of samples—rows of data—passing through to a model at

one time] * 10 epochs) from the initial model with the zero value of gra-

dients to an optimal model with updated values through feedforward

and backpropagation (cf. Xu et al., 2020). Finally, the trained model

per epoch classified the test stimuli; likewise for the LSTM model, we

averaged the by-condition classification outcomes from 30 times of

learning.

The GPT-2 model’s training process was almost the same as above,

except that GPT uses no symbol to mark the start/end of each input

sentence; after patching the caregiver-input data to the pre-trained

model, its vocabulary size increased (51,200 to67,052).Originally,GPT

and BERT differ with respect to tokenisation: while BERT (WordPiece)

utilises a word as a basis for tokenisation, GPT-2 (Byte Pair Encoding)

utilises a character (in the case of English) for this purpose. However,

bothKoBERT andKoGPT-2 employ a syllable as a basic unit of tokenisa-

tion (likely in consideration of the properties of Korean), so there was

no essential difference between the two methods regarding tokenisa-

tion (but note that the two models manifest notable model specificity;

see Section 1.2).

For test items, we employed the same stimuli used in Shin (2021).

Each condition consisted of six instances, with animals as agents and

themes and actional verbs at the end (Table 3). Each trained model

classified every test stimulus, evaluating whether the stimulus fell

into Agent-First or Theme-First. We note that, while the stimuli of

NCASENCASEV and NCASEV in Shin (2021) involved acoustic masking,

the same stimuli type in the simulation did not have such auditory

effects. This was unavoidable considering this study’s simulation set-

ting where the models worked exclusively with the text data. We

acknowledge that this difference might serve as one confounding

factor for interpreting the results.

3 RESULTS

3.1 Case-marked conditions

Figure 5 illustrates the classification performance of the four models

on the four case-marked conditions. For the two-argument condi-

tions, whereas all the models except BERT achieved high accuracy in

NNOMNACCV, only LSTM demonstrated high accuracy in NACCNNOMV.

For the one-argument conditions, all the models except BERT showed

high accuracy in NNOMV and the four models exhibited very high accu-

racy in NACCV. Overall, of the four models, LSTM seemed close to

children in its performance on these conditions.

While the BERT model’s performance appeared to be peculiar, the

results broadly imply two possible traits in the models’ classifica-

tion performance on the case-marked conditions. First, it seems that

Word2Vec and GPT-2 followed characteristics of the caregiver input

selectively. There are two important characteristics of the caregiver

input (Appendix B). One is that the number of first-noun-as-agent

patterns (3049 instances) did not exceed that of first-noun-as-theme

patterns (3579 instances). The other property is that the number of

nominative-first patterns (overtly marked with the nominative case

marker; 3369 instances) outnumbered that of accusative-first pat-

terns (overtlymarkedwith the accusative casemarker; 1989 instances)

despite the generally higher omission rate of the accusative case

marker than that of the nominative case marker in caregiver input

(Shin, 2022a). Given these characteristics, as epoch progressed, the

two models may have attended primarily to the form of a specific case

marker (overtly attested in a test stimulus) rather than to the mean-

ing/function (i.e., thematic roles) of the initial noun, possibly leading

to both success in one-argument conditions where consideration of

thematic role ordering was not required but partial success in the two-

argument conditions where thematic role ordering between the two

arguments should be considered. Thismayhavebeen further enhanced

by the respective pre-trained models, created by general/adult lan-

guage use involving the dominance of canonical word order and the

frequent omission of the accusative casemarker (Sohn, 1999).

Second, the LSTMmodel’s outperformance over the transformers—

against our prediction—possibly indicates the algorithm-exclusive

memory cell’s contribution to information processing. That is, the exis-

tence of a memory cell may have assisted the classification accuracy

as effectively as the attention mechanism of the transformers in the

given simulation environment. Considering that transformer architec-

ture excels in utilising information from long input sequences (see

Section 3), it is reasonable to think that the transformers in this study

(and BERT in particular) may not have fully exerted their algorith-

mic strength when coping with child language behaviour. The LSTM

model’s good classification performance further aligns with previous

reports on the LSTM’s success in learning and generalising clause-level

linguistic knowledge (Futrell & Levy, 2019; Marvin & Linzen, 2019;

Wilcox et al., 2018). Specifically, when the characteristics of a test

stimulus does not match those of typically appearing sentences in

use (like scrambled word order), the attention mechanism may not

have discriminated that stimulus effectively due to the larger volume

of information—both sequential and positional information—that it

retains compared to the recurrent architecture,whichhasonly sequen-

tial information. This implies that a sophisticated, cutting-edge model

may not always bring the best outcome.

However, these interpretations only tentatively answer how these

NN models reveal children’s utilisation of the Agent-First strategy

in comprehension, until we check the models’ performance in the
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F IGURE 5 Child comprehension andmodel performance: case-marked conditions.Note: x-axis: epoch; y-axis: accuracy (averaged). Gold=
Word2Vec; Green= LSTM; Blue=BERT; Black=GPT-2. Error bars indicate 95%CI.

remaining two case-less conditions—NCASENCASEV and NCASEV. The

next section presents the models’ performance on these two condi-

tions, which had served as the core evidence against the children’s

spontaneous and faithful application of this cognitive bias towards

comprehension in Shin (2021).

3.2 Case-less conditions

Figure6 illustrates the classificationperformanceof the fourmodels on

the two case-less conditions. For NCASENCASEV, all the models except

BERT showed an agent-first preference in classification as epoch pro-

gressed (with GPT-2 being the highest), which was broadly similar to

the children’s performance in this condition. Notably, BERT under-

performed in this condition, with the chance-level rate of agent-first

classification at epoch 10. For theNCASEV, all themodels demonstrated

eccentric performance: Word2Vec invariably remained at-chance;

LSTM steadily improved its performance (but its agent-first classifi-

cation rate was under 30%); the performance of BERT and GPT-2

fluctuated considerably and these models yielded less than 20% of

agent-first classification rate.

Overall, in these case-less conditions, the NN models failed to

capture the trend manifested by the children in a satisfactory manner.

Specifically, the two transformers (BERT; GPT-2) malfunctioned in

NCASEV, performing with high deviation from the children’s inter-

pretation for the same condition. One possible cause of this global

anomaly originates from the interaction between the nature of the two

conditions and the models’ information-processing mechanism, which

looks exclusively to formal sequences. Recall that the two conditions

involve no case-marking; this under-informativeness in determining
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F IGURE 6 Child comprehension andmodel
performance: case-less conditions.Note: x-axis:
epoch; y-axis: agent-first classification rate
(averaged). Gold=Word2Vec; Green= LSTM; Blue=
BERT; Black=GPT-2. Error bars indicate 95%CI. The
performance indicates the high likelihood of
agent-first interpretation (1: agent-first; 0:
theme-first) because these conditions can in principle
be interpreted inmore than oneway.

the thematic role of the first noun would have affected both the chil-

dren’s comprehension and these models’ classification performance.

However, the NN models may have been more influenced than the

children by the lack of reference point for the classification decision

(i.e., case marker) that was attested in the stimuli, rendering their

performance substantially deviant from the children’s response rates.

The fact that the LSTM model improved its classification perfor-

mance towards Agent-First as epoch progressed may further indicate

the contribution of its algorithmic characteristic to revealing child

language behaviour as in the case-marked conditions, but notably,

its agent-first classification rate was still far below the children’s

performance.

In sum, compared to the children’s interpretation, the classification

performance of the NN models on the two case-less conditions was

altogether eccentric, manifesting asymmetric degrees of by-model and

by-condition performance.

4 GENERAL DISCUSSION

Motivated by the proxy provided by NNs as biologically inspired mod-

els of computation, we developed four NNmodels and measured their

classification performance on the active transitive sentences used in

Shin (2021) involving scrambling/omission of sentential components

at varying degrees. Considering Shin’s (2021) experimental setting

in which the children were shown transitive-event pictures prior to

a stimulus to contextualise their interpretation of that stimulus, we

trained each model with the caregiver input of constructional pat-

terns for expressing transitive events in CHILDES. Overall, despite

some compatibility of these models’ performance with the children’s

response patterns, their performance did not fully approximate the

Korean-speaking children’s comprehension behaviour pertaining to

the Agent-First strategy, and demonstrated by-model and by-condition

asymmetries. Moreover, the predicted benefit of transformers in this

classification task did not clearly emerge.

This study’s results are ascribable to various factors. For instance,

the simulation environment in this study may not have sufficiently

conformed to Shin’s (2021) experimental setting to the extent that

the models processed the stimuli in the same way as the children

did in the experiment. Recall that we trained each model with all the

transitive-event instances inCHILDES (seeAppendixB), reflecting how

the children in Shin (2021) attuned their interpretation to transitive

events before theywere exposed to the stimuli. Despite this treatment,

the models might not have had a testing environment fully compati-

ble withwhat the children experienced.Moreover, the test items in the

simulation involved no acoustic signals (Table 3) as used in Shin (2021)

that allowed the children to know that therewas something but hidden

(Figure 1). This absence of auditory information about the marker(s),

which was inevitable given the simulation setting in which the models

operated exclusively with the textual data, may thus have affected the

model performance in an unexpectedway (cf. Stoyneshka et al., 2010).4

On top of this, we used the pre-trained models involving mature lan-

guage in various genres when constructing each NNmodel for various

reasons (see Section 2). Together, although we conducted the simula-

tion work as consistently with the experimental setting in Shin (2021)

as possible, this simulation inherently stood on a slightly different

ground than the experiment (as most modelling research does), possi-

bly generating the observed model-children asymmetry. However, we

highlight that, because these issues have not been fully explored in this

field, we cannot conclude that these are the all-and-only reasons of this

asymmetry.

Another possible contributing factor to the model performance is

around language-specific properties. Whereas Korean caregiver input

joins the general characteristics of child-directed speech (Shin, 2022a;

cf. Cameron-Faulkner et al., 2003; Stoll et al., 2009), it also mani-

fests language-specific properties such as scrambling and omission of

sentential components (seeAppendixB for the constructional-pattern-

wise variability). Along with the general nature of caregiver input,

the models may thus have been affected by the specific word order

and/or the presence of case markers in conducting the classification,
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particularly as shown with the two-argument case-marked scrambled

condition (NACCNNOMV) and the case-less conditions (NCASENCASEV;

NCASEV). This aligns with previous reports on language-specific chal-

lenges for automatic processing of Korean (Kim et al., 2007; Shin,

2022a). Since we are not aware of any study on language-specific

properties and NNs’ performance on child language, this claim awaits

further examination.

In addition to these factors, we argue that the models’ algorithmic

characteristics may be a core source of this asymmetry. NNs often

exploit contextual information through window-based computation

(Haykin, 2009; Kriesel, 2007) when given a sampling of data points.

One common practice regarding this computation is to induce con-

textual information from formal sequences comprising words and/or

characters; to put it differently, they rely heavily on form. This yields

a context in a computational sense (cf. Firth, 1957), but it differs from

a context in a linguistic sense comprising semantic–pragmatic infor-

mation. Hence, whenever the models access the meaning/function of

a linguistic unit, they exploit the formal co-occurrences in the incom-

ing input, rather than directly drawing upon the meaning/function of

that unit. Moreover, NNs are designed to generalise what they already

have (through pre-trainedmodels and additional information obtained

from training) but are not designed to make reasonable predictions

and extrapolation outside of the training space (Marcus, 1998). Deep-

learningmodels attempt to resolve this issuebyusing exceedingly large

datasets to cover every possible instance of formal co-occurrences;

this often yields good performance when handling known inputs, but

still not with novel inputs.5 The stimuli in Shin (2021), consisting of ani-

mal names as entities, would be new instances for these NN models

in this respect (and also considering the typical composition of tran-

sitive sentences in ordinary speech—animate agents and inanimate

themes; e.g., Dowty, 1991; Ibbotson & Tomasello, 2009; Langacker,

1991), thus possibly leading the models to malfunction in their oper-

ation. Therefore, this algorithmic nature may have rendered the NN

models deviant from the children’s performance on some test items

possibly out of range. The key evidence comes from the models’

performance on NCASEV (where a simulated learner must determine

the thematic role of the first and sole case-less noun only with its

presence) compared to their performance on NNOMV and NACCV

(where a simulated learner has more, and core, information about the

first noun’s thematic role indicated by specific case marker next to

the noun).

Relating to this, the reason for the peculiarity of the BERT model

in this study is unclear. We speculate that the unit of processing (i.e.,

sentence) and the way that it learns through two particular tasks may

not be ideal for processing the test items given the notable differences

between the experimental setting and the simulation environment.

Considering that BERT often demonstrates good performance with

long sequences (Devlin et al., 2018; Vaswani et al., 2017), the simple,

short, and repetitive nature of child-directed speech may have diluted

its algorithmic strength. Compared to that, the domain-generality of

the GPT algorithm may have offset the similar drawback to some

degree, leading to a partial success in approximating the children’s

response rate (but not to the extent that the LSTM model showed its

gradual improvement regarding the performance on NCASEV). Regard-

less, our reasoning here remains speculative and requires further

investigation.

Despite the same pursuit of efficiency in information processing,

thismanner of algorithmic operation differs fromhowa human proces-

sor deals with linguistic knowledge. Decades of research have shown

that the linguistic processor operates in a way that reduces the bur-

den of work at hand, by immediately mapping form onto function (and

vice versa) under simultaneous activation of multiple (non-)linguistic

routes, combined with cognitive-psychological factors (Christianson,

2016; Ferreira, 2003; Karimi & Ferreira, 2016; Levy, 2008; McElree,

2000; McRae & Matsuki, 2009; O’Grady, 2015; Traxler, 2014). In par-

ticular, the child processor manifests notable characteristics due to

its the developing nature (cf. Omaki & Lidz, 2015). To illustrate, the

child processor favours reliable and/or available cueswith aone-to-one

mapping relation between form and function (Bates & MacWhinney,

1989; Cameron-Faulkner et al., 2003; Shin, 2021, 2022b; Shin & Mun,

2023). Given the global impact of general language-usage experience

(Ambridge et al., 2015; Tomasello, 2003), the processor is particu-

larly sensitive to particular linguistic environments in which a target

item is situated (Dąbrowska, 2008; Dittmar et al., 2014; Goldberg

et al., 2004). The degree to which the current stimulus is informative

against the prior language-usage experience alsomodulates its perfor-

mance (Dittmar et al., 2008; Shin, 2021, 2022b; Shin & Deen, 2023;

Stromswold et al., 1985). Furthermore, the contribution of domain-

general factors to the processor’s operation is sometimes limited or

less efficient (Adams & Gathercole, 2000; Diamond, 1985). These

aspects seem to collectively modulate how the developing processor

adjusts its way to arriving at comprehension (Choi & Trueswell, 2010;

Garcia et al., 2021; Huang et al., 2013; Özge et al., 2019; Snedeker &

Trueswell, 2004).

Therefore, it may be the case that the children in Shin (2021)

made the best, albeit imperfect, use of the information available at

the time, based on their learning trajectories. When the children

listened to an aural stimulus and were asked to choose one picture

over the other, they must compute the relative agenthood between

the two arguments with no animacy cue available (cf. Chan et al., 2009;

Theakston et al., 2012). For this task, the child processor was likely

to draw upon multiple morpho-syntactic and semantic cues, including

distributional (e.g., mapping between an event representation and

a syntactic representation manifested in word order) and local (e.g.,

pairings between thematic roles and case-marking) ones, which are

searchable from their language-usage profiles. At the same time,

their interpretation was likely to be swayed away by multiple sources,

including event/world knowledge, memory operation, and a cognitive

bias such as the Agent-First strategy. This simultaneous interplay of

various linguistic and domain-general factors affecting the operation

of the child processor may not have been properly captured/modelled

by the NNmodels developed in the current study.

Notably, the findings of the present study do not entirely align with

those of You et al. (2021), which assumed that word-embedding algo-

rithms resemble human distributional learning by building connections

between contextual frames and target words. Based on the success
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of the Word2Vec learner in the discrimination task, they claimed

that the Word2Vec’s ability to extract causal meaning from simple

co-occurrence of neighbouring words suffices in modelling how a sta-

tistical learner acquires the intendedmeaning from the formal patterns

in raw input. While we agree with the role of contextual informa-

tion (in a computational sense) generated by formal correlations from

input sequences for model performance, we hesitate to fully advocate

this claim about child language development. As shown in this study,

there are limits on the success of a computational model in approx-

imating children’s comprehension behaviour only by accessing word

co-occurrences in caregiver input.6 Moreover, You et al.’s study relied

on one model (Word2Vec) and one language (English), rendering it dif-

ficult to precisely assess the NNs’ ability concerning this issue. This

calls for further study seeking to clarify what NNs can(not) explain

pertaining to child language development.

5 CONCLUSION

It appears that NNs tested in this study can utilise information about

formal co-occurrences to access the intended message to a certain

degree.However, (the outcomeof) this processmay substantially differ

fromhowa child, as a developing processor, engages in comprehension.

Through its use of various NN models and language typologically dif-

ferent from the major languages currently under investigation in the

field, the present study provides evidence of some limits of the NNs’

capability to address child language behaviour, with a special focus

on the Agent-First strategy in child comprehension. We believe the

implications of this study invite subsequent questions of the extent to

which NNs, as an artifact of biological neurons, reveal developmental

trajectories of child language that have been unveiled through corpus-

based and experimental research. This proffers an important avenue

for future research on the explainability of artificial intelligence on

(child) language development typically surrounded with various lin-

guistic and cognitive-psychological factors and situated under various

usage/learning contexts.
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ENDNOTES
1Abbreviations: ACC, accusative case marker; ADV, adverbial suffix; CASE,

case marker (unspecified); NOM, nominative case marker; PST, past tense

marker; SE, sentence ender; V, verb.
2An eojeol, roughly corresponding to a word in English, is defined as a unit

withwhite space onboth sides that serves as theminimal unit of sentential

components.
3See this repository for the code and dataset. On a side note, comparing

variations of the same NN architecture with parameter manipulation was

not the primary interest in this study; we followed recommendations and

suggestions made by previous studies to obtain optimal outcomes. We

believe this model-internal comparison would present a robust area for

future research.
4Some studies try to alleviate this issue by implementing additional devices

to their simulations such as thematic role variables (Chang, 2002) and a

layer encoding semantic information (Alishahi & Stevenson, 2008).
5 In this respect, onepromising directionof future researchwould be to con-

sider multimodal embedding in modelling child language (cf. Mithun et al.,

2018; Sung et al., 2017).
6To clarify, we are not arguing that child language development is best

explained by innate principles of grammar that learners are believed to fol-

low as learning progresses, as the nativist claims (Crain, 1991; Lidz et al.,

2003). Our study’s results do not speak directly to the validity of this

approach.
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APPENDIX A: Information about corpora

Name of

corpus Caregiver

Child/age

range

Time of

collection (year)

Quantity

(sentence #)

Jiwon M& F Jiwon/2;0–2;3 1992 10,602

Ryu GM, GF, &M Jong/1;3–3;5 2009–2011 28,657

GM,M, & F Joo/1;9–3;10 2010–2011 27,071

M Yun/2;3–3;9 2009–2010 15,263

Abbreviations: F, father; GF, grandfather; GM, grandmother;M, mother.
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APPENDIX B: Constructional patterns for transit ive events in the caregiver input

Construction Label Example

Frequency

# %

Canonical

active

transitive

No omission Agent-first Mia-NOMCiwu-ACC hug 1757 25.46

no ACC Mia-NOMCiwu-ACC hug 268 3.88

noNOM Mia-NOMCiwu-ACC hug 19 0.28

Scrambled

active

transitive

No omission Theme-first Ciwu-ACCMia-NOMhug 51 0.74

noNOM Ciwu-ACCMia-NOMhug 0 0.00

no ACC Ciwu-ACCMia-NOMhug 6 0.09

Active

Transitive

with

omission

agent–theme, no CM Agent-first Mia-NOMCiwu-ACC hug 3 0.04

theme–agent, no CM Theme-first Ciwu-ACCMia-NOMhug 0 0.00

undetermined, no CM Agent-first Mia-NOMCiwu-ACC hug 0 0.00

agent–NOMonly Mia-NOMhug 935 13.55

theme–ACC only Theme-first Ciwu-ACC hug 1938 28.08

agent only, no CM Agent-first Mia-NOMhug 53 0.77

theme only, no CM Theme-first Ciwu-ACC hug 1155 16.73

undetermined, no CM1) Agent-first Mia-NOMhug 40 0.58

Canonical

suffixal

passive

No omission Theme-first Ciwu-NOMMia-DAT hug-psv 2 0.03

noDAT Ciwu-NOMMia-DAT hug-psv 0 0.00

noNOM Ciwu-NOMMia-DAT hug-psv 0 0.00

Scrambled

suffixal

passive

No omission Agent-first Mia-DATCiwu-NOMhug-psv 1 0.01

noNOM Mia-DATCiwu-NOMhug-psv 0 0.00

noDAT Mia-DATCiwu-NOMhug-psv 0 0.00

Suffixal

passive

with

omission

theme–agent, no CM Theme-first Ciwu-NOMMia-DAT hug-psv 0 0.00

agent–theme, no CM Agent-first Mia-DATCiwu-NOMhug-psv 0 0.00

undetermined, no CM Theme-first Ciwu-NOMMia-ACC hug-psv 0 0.00

theme–NOMonly Ciwu-NOMhug-psv 407 5.90

agent–DAT only Agent-first Mia-DAT hug-psv 13 0.19

theme only, no CM Theme-first Ciwu-NOMhug-psv 20 0.29

agent only, no CM Agent-first Mia-DAT hug-psv 0 0.00

undetermined, no CM2) Theme-first Mia-NOMhug-psv 0 0.00

Ditransitive recipient–DAT only1) Agent-first Mia-DAT give 234 3.39

SUM 6902 100.00

Note: CM= case-marking.Ciwu andMia are human names. 1) and 2)were determined by the typical thematic role ordering in each construction type express-

ing transitive events: agent-before-theme for 1) (active transitive); theme-before-agent for 2) (suffixal passive). We included a ditransitive construction with

only a recipient–dative pairing. Although it does not relate to a transitive event per se and does not count as a relevant pattern, we considered this construc-

tional pattern here because the dative marker is often used to indicate a recipient in the active and thus a potential competitor of the agent–dative pairing in

the passive.
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